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Section A (36 marks)

1 Given that y = 3
√

1 + x2, find
dy

dx
. [4]

2 Solve the inequality |2x + 1| ≥ 4. [4]

3 The area of a circular stain is growing at a rate of 1 mm2 per second. Find the rate of increase of its

radius at an instant when its radius is 2 mm. [5]

4 Use the triangle in Fig. 4 to prove that sin2
θ + cos2

θ = 1. For what values of θ is this proof valid?

[3]
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Fig. 4

5 (i) On a single set of axes, sketch the curves y = ex − 1 and y = 2e−x. [3]

(ii) Find the exact coordinates of the point of intersection of these curves. [5]

6 A curve is defined by the equation (x + y)2 = 4x. The point (1, 1) lies on this curve.

By differentiating implicitly, show that
dy

dx
= 2

x + y
− 1.

Hence verify that the curve has a stationary point at (1, 1). [4]
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7 Fig. 7 shows the curve y = f(x), where f(x) = 1 + 2 arctan x, x ∈ >. The scales on the x- and y-axes are

the same.

1

x

y

Fig. 7

O

(i) Find the range of f, giving your answer in terms of π. [3]

(ii) Find f −1(x), and add a sketch of the curve y = f −1(x) to the copy of Fig. 7. [5]
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Section B (36 Marks)

8 (i) Use the substitution u = 1 + x to show that

ä 1

0

x3

1 + x
dx = ä b

a

(u2 − 3u + 3 − 1

u
) du,

where a and b are to be found.

Hence evaluate ä 1

0

x3

1 + x
dx, giving your answer in exact form. [7]

Fig. 8 shows the curve y = x2 ln(1 + x).

x

y

Fig. 8

O

(ii) Find
dy

dx
.

Verify that the origin is a stationary point of the curve. [5]

(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve

y = x2 ln(1 + x), the x-axis and the line x = 1. [6]
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9 Fig. 9 shows the curve y = f(x), where f(x) = 1

cos2 x
, −1

2
π < x < 1

2
π, together with its asymptotes x = 1

2
π

and x = −1
2
π.

y

Fig. 9
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(i) Use the quotient rule to show that the derivative of
sin x

cos x
is

1

cos2 x
. [3]

(ii) Find the area bounded by the curve y = f(x), the x-axis, the y-axis and the line x = 1
4
π. [3]

The function g(x) is defined by g(x) = 1
2
f(x + 1

4
π).

(iii) Verify that the curves y = f(x) and y = g(x) cross at (0, 1). [3]

(iv) State a sequence of two transformations such that the curve y = f(x) is mapped to the curve

y = g(x).
On the copy of Fig. 9, sketch the curve y = g(x), indicating clearly the coordinates of the minimum

point and the equations of the asymptotes to the curve. [8]

(v) Use your result from part (ii) to write down the area bounded by the curve y = g(x), the x-axis,

the y-axis and the line x = −1
4
π. [1]
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