RECOGNISING ACHIEVEMENT

ADVANCED GCE
MATHEMATICS (MEI)
4753/01
Methods for Advanced Mathematics (C3)

QUESTION PAPER

Candidates answer on the printed answer book.
OCR supplied materials:

- Printed answer book 4753/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

- Scientific or graphical calculator

Wednesday 19 January 2011
Afternoon
Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- \quad The total number of marks for this paper is 72.
- The printed answer book consists of 12 pages. The question paper consists of $\mathbf{8}$ pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

- Do not send this question paper for marking; it should be retained in the centre or destroyed.

Section A (36 marks)

1 Given that $y=\sqrt[3]{1+x^{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

2 Solve the inequality $|2 x+1| \geqslant 4$.

3 The area of a circular stain is growing at a rate of $1 \mathrm{~mm}^{2}$ per second. Find the rate of increase of its radius at an instant when its radius is 2 mm .

4 Use the triangle in Fig. 4 to prove that $\sin ^{2} \theta+\cos ^{2} \theta=1$. For what values of θ is this proof valid?

Fig. 4

5 (i) On a single set of axes, sketch the curves $y=\mathrm{e}^{x}-1$ and $y=2 \mathrm{e}^{-x}$.
(ii) Find the exact coordinates of the point of intersection of these curves.

6 A curve is defined by the equation $(x+y)^{2}=4 x$. The point $(1,1)$ lies on this curve.
By differentiating implicitly, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x+y}-1$.
Hence verify that the curve has a stationary point at $(1,1)$.

7 Fig. 7 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+2 \arctan x, x \in \mathbb{R}$. The scales on the x - and y-axes are the same.

Fig. 7
(i) Find the range of f , giving your answer in terms of π.
(ii) Find $\mathrm{f}^{-1}(x)$, and add a sketch of the curve $y=\mathrm{f}^{-1}(x)$ to the copy of Fig. 7 .

Section B (36 Marks)

8 (i) Use the substitution $u=1+x$ to show that

$$
\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\int_{a}^{b}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u,
$$

where a and b are to be found.
Hence evaluate $\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x$, giving your answer in exact form.
Fig. 8 shows the curve $y=x^{2} \ln (1+x)$.

Fig. 8
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Verify that the origin is a stationary point of the curve.
(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve $y=x^{2} \ln (1+x)$, the x-axis and the line $x=1$.

9 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\cos ^{2} x},-\frac{1}{2} \pi<x<\frac{1}{2} \pi$, together with its asymptotes $x=\frac{1}{2} \pi$ and $x=-\frac{1}{2} \pi$.

Fig. 9
(i) Use the quotient rule to show that the derivative of $\frac{\sin x}{\cos x}$ is $\frac{1}{\cos ^{2} x}$.
(ii) Find the area bounded by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\frac{1}{4} \pi$.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\frac{1}{2} \mathrm{f}\left(x+\frac{1}{4} \pi\right)$.
(iii) Verify that the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ cross at $(0,1)$.
(iv) State a sequence of two transformations such that the curve $y=\mathrm{f}(x)$ is mapped to the curve $y=g(x)$.

On the copy of Fig. 9, sketch the curve $y=\mathrm{g}(x)$, indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
(v) Use your result from part (ii) to write down the area bounded by the curve $y=\mathrm{g}(x)$, the x-axis, the y-axis and the line $x=-\frac{1}{4} \pi$.

BLANK PAGE

BLANK PAGE

RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

